

РУКОВОДСТВО ПО ПОБОРУ И МОНТАЖУ

РИГЕЛЕЙ БЛОКИРУЮЩИХ

Содержание

1.	Условия применения и принцип работы		
2.			
3.	Подбор ригеля	6	
3.1.	Расчёт количества ригелей	6	
3.2.	Выбор типа ригеля	6	
3.3.	Пример подбора ригеля	9	
4.	Монтаж ригелей	10	

- Настоящее руководство содержит описание типов ригелей блокирующих, рекомендации по их подбору для различных типов валов и профилей, описание основных операций по монтажу ригелей.
- Руководство может быть использовано в качестве руководящего документа при обучении и работе технического персонала. Рекомендуется пользоваться им совместно с «Техническим каталогом».
- Руководство составлено на основе нашего опыта и знаний. Все существующие нормы и правила, распространяющиеся на монтаж роллет, должны неукоснительно соблюдаться.
- Содержание данного документа не может являться основой для юридических претензий. Компания «Алютех» оставляет за собой право на внесение изменений и дополнений в руководство.

Для защиты от несанкционированного подъема роллетного полотна применяются различные по конструкции приспособления. Наибольшее распространение получили устройства типа "ригель блокирующий" (в дальнейшем - ригель) ввиду своей высокой надежности и простоты конструкции.

1. ОПИСАНИЕ КОНСТРУКЦИИ

- Стандартный ригель состоит из: верхней секции, одной или нескольких промежуточных секций, секции ригельной нижней, планки-замка, пружин и осей
- Конструктивные особенности ригеля приведены ниже.

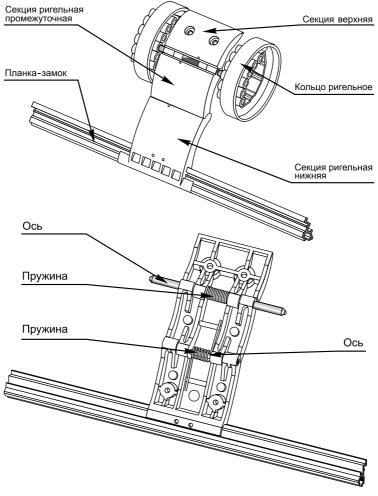


Рисунок 1. Конструкция ригеля

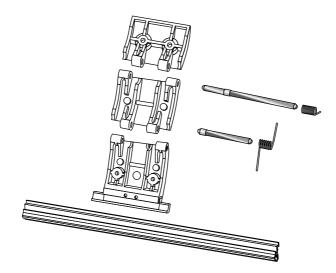


Рисунок 2. Конструкция ригеля. Вид с внутренней стороны, в разборе (поэлементно).

- В зависимости от применяемой конструкции планки-замка, ригели подразделяются на два типа: RG и RGM.
- Ригели типа RG применяются для роллетных систем, полотно которых выполнено из профилей AR/55, ARH/55, AER55/S, AG/77, AEG56, AER56.
- Ригели типа RGM применяются для роллетных систем, полотно которых выполнено из профилей AR/37, AR/40, ARH/40, AR/45, AER42, AER44/S, AR/41eco и AR/55eco.
- В свою очередь каждый тип ригеля подразделяется на три типоразмера. Деление по типоразмеру обусловлено различной длиной ригелей, что позволяет использовать их в роллетных системах с разными размерами защитных коробов. Увеличение длины ригеля конструктивно обеспечивается применением большего количества промежуточных секций. Ригель типоразмера 2 имеет одну промежуточную секцию, типоразмера 3 - две, типоразмера 4 - три секции соответственно.

2. УСЛОВИЯ ПРИМЕНЕНИЯ И ПРИНЦИП РАБОТЫ

- При попытке несанкционированного подъема роллетного полотна промежуточные и нижняя секции ригеля проворачиваются относительно оси А, ригель становится в распор между стенкой короба и неподвижным валом, препятствуя вертикальному перемещению ламелей. При этом усилие, прикладываемое для подъема, воздействует на внутреннюю стенку короба и вал.
- Ригель выполняет функцию блокирующего устройства тогда, когда выполнены следующие условия (Рис.4):
 - 1. роллетное полотно опущено в крайнее нижнее положение, ламели сомкнуты, ригель подобран и установлен согласно рекомендаций (см. раздел 3.2).

- 2. нижняя ригельная секция, или замковый профиль, или верхняя ламель должны опираться на внутреннюю стенку короба;
- 3. вал должен быть зафиксирован, т.е. не иметь возможности проворота вокруг своей оси или сдвига; обеспечивается применением электрического и редукторного приводов.
- 4. отсутствие значительной деформации прогиба вала октогонального. Вал должен быть подобран в соответствии с весом роллетного полотна.

F - усилие подъёма

F_t - усилие, воздействующее на стенку короба

 $\mathbf{F_n}$ - усилие, воздействующее на вал

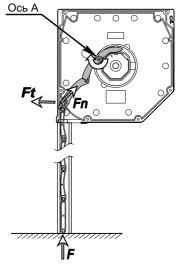


Рисунок 3. Схема работы ригеля.

Внимание! Ригели не используются в качестве <u>блокирующего устройства</u> для роллет с пружинно-инерционным механизмом, шнуровым, ленточным и кордовым приводами, а также при монтаже с использованием подвижных кареток типа RC, крышек боковых SF360/S, консолей BRC с любым типом привода.

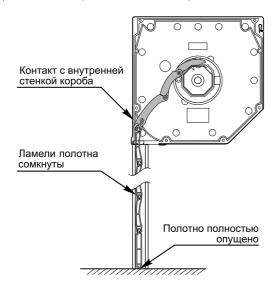


Рисунок 4. Условия правильной эксплуатации ригеля.

3. ПОДБОР РИГЕЛЯ

3.1 РАСЧЕТ КОЛИЧЕСТВА РИГЕЛЕЙ

 На роллете должно быть установлено минимум два ригеля. Схема расположения ригелей при монтаже представлена на рис.5. Рекомендуемое количество ригелей рассчитывается по следующей формуле:

$$Z = (L_{\square} - 450) : 500 + 1$$

где: \mathbf{L}_{Π} - длина ламелей полотна роллеты (мм);

Полученное значение Z округлить в большую сторону до целого числа.

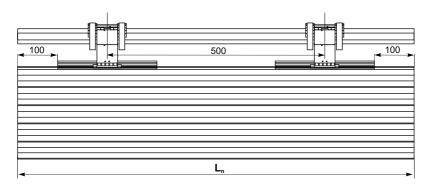


Рисунок 5. Схема расположения ригелей.

3.2 ВЫБОР ТИПА РИГЕЛЯ

 Выбор блокирующего ригеля производить в следующей последовательности (графические обозначения см. рис.6):

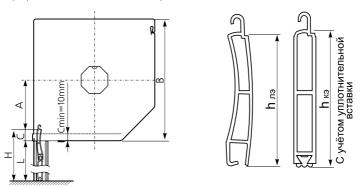


Рисунок 6. Схема к расчету для выбора ригеля.

1. Рассчитать высоту **H** сомкнутого полотна с учетом концевой ламели и нижней уплотнительной вставки по формуле:

$$H = h_{\Pi \ni} x k + h_{K \ni}$$

где:

 ${f h}_{\Pi
ightarrow}$ - эффективная высота ламели, мм;

 $\mathbf{h}_{\mathsf{K} \ni}$ - эффективная высота концевой ламели с учетом размера уплотнительной вставки, мм:

k - количество ламелей.

2.Определить величину **С** вылета верхней ламели над верхним обрезом направляющих шин по формуле:

$$C = H - L$$

где: **L** - длина направляющей шины, мм.

На собранной роллете должно выполняться условие:

$$10 \text{ MM} < C < (10 \text{ MM} + h_{\Pi \ni})$$

В случае, когда

$$C > (10мм + h_{п}) - уберите лишние ламели!$$

3.Определить расстояние **A** от оси вала роллеты до верхней ламели (без замка) по формуле:

$$A = B/2 - C,$$

где: В - размер короба, мм.

4.По представленным ниже диаграммам (рис.7-9) выбрать тип ригеля. На каждой из диаграмм он обозначен цифрами (2-x, 3-x, 4-x секционный).

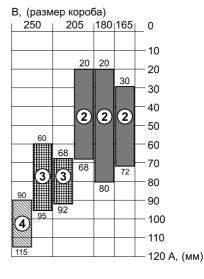


Рисунок 7. Диаграмма выбора типа ригеля для роллет с валом октогональным RT40x0,6

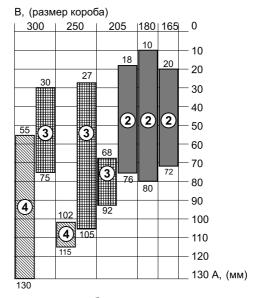


Рисунок 8. Диаграмма выбора типа ригеля для роллет с валом октогональным RT60x0,8

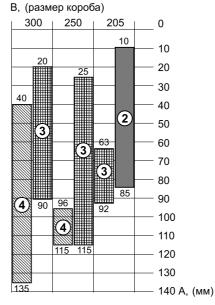


Рисунок 9. Диаграмма выбора типа ригеля для роллет с валом октогональным RT70x1,2

3.3 ПРИМЕР ПОДБОРА РИГЕЛЯ

Исходные данные:

- 1. короб SB45/250;
- **2.** полотно роллетное из 42 ламелей профиля **AER45/S** и одной ламели профиля концевого **ESU8x45** с уплотнительной вставкой, длина ламелей \mathbf{L}_{Π} =2000мм;
- 3. длина направляющих шин **L**=1905 мм;
- 4. вал октогональный RT40x0,6.

Последовательность выбора:

1. Рассчитываем количество ригелей для данного полотна:

$$Z= (L_{\square} - 450) : 500 + 1$$

 $Z= (2000 - 450) : 500 + 1=4,1 \, \text{mT}$

Принимаем Z = 4шт

2. Определяем высоту полотна Н:

$$H = h_{\Pi \ni} x k + h_{K \ni}$$

 $\mathbf{h}_{\Pi 3} = 45 \text{ мм для профиля AER45/S};$

k = 42 шт;

 $\mathbf{h}_{K9} = 46$ мм для профиля ESU8x45 с уплотнительной вставкой.

Тогда:

$$H = 45 \times 42 + 46 = 1936 \text{ MM}$$

3.Рассчитываем величину **С** вылета верхней ламели над верхним обрезом направляющих шин:

$$C = H - L = 1936 - 1905 = 31 \text{ MM}$$

4. Определяем расстояние **A** от оси вала до верхней ламели (без замка) (см. рис.б):

$$A = B/2 - C = 250/2 - 31 = 94 \text{ MM}$$

5. По диаграмме определяем тип ригеля (см. рис.10)

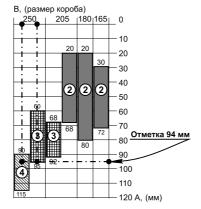


Рисунок 10. Схема определения типа ригеля.

- 6. Результат выбора:
- Коробу SB45/250 при значении A=94 мм соответствуют 3-х и 4-х секционный ригели. Для профиля AER45/S выбираем ригель RGM3 или RGM4.

4. МОНТАЖ РИГЕЛЕЙ

- Монтаж ригелей производится в указанной последовательности:
 - 1. Установить ригельные кольца на октогональный вал (до монтажа вала в роллету) из расчета 2 кольца на один ригель, при этом обратить внимание на то, чтобы все кольца были одинаково сориентированы (рис.11).

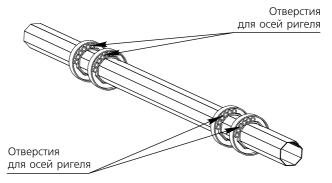


Рисунок 11. Установка колец на вал.

2. Вставить планку-замок ригеля в замок верхней ламели роллетного полотна (рис.12).

Внимание! Запрещается использовать на одном роллетном полотне ригели разных типов!

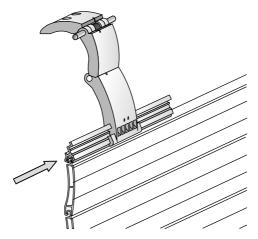
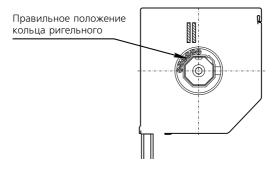



Рисунок 12. Установка ригеля на полотно.

3. Завести полотно в направляющие шины и опустить его до полного смыкания ламелей. Распределить ригели по всей длине вала с соответствующим интервалом (не более 500 мм), соблюдая следующее условие - крайние ригели должны располагаться как можно ближе к шинам (не далее чем 100 мм).

4. Установить вал в соответствии с рисунком 10, предварительно отрегулировав концевые выключатели электропривода или ограничители хода редуктора для крайнего нижнего положения полотна.

Рисунок 13. Положение ригельных колец.

5. Перед монтажом полотна убедиться в том, что концевые выключатели электропривода или ограничители хода редуктора отрегулированы для крайнего нижнего положения. Произвести монтаж полотна на вал роллеты, установив ось ригеля в ближайшие отверстия ригельных колец, свести кольца к секциям ригеля до упора. Положение колец зафиксировать самонарезающими винтами (рис.14). Рекомендуется использовать винты с полукруглой головкой с диаметром нарезки 3,9 мм и длиной нарезной части 9,5 мм.

Внимание! При наличии электропривода вал не сверлить! Винт закручивать в радиальное отверстие кольца ригельного до упора в стенку вала

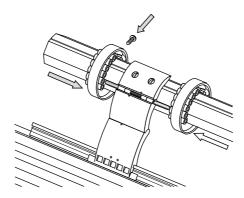


Рисунок 14. Монтаж полотна роллеты на вал.

- Рекомендуется дополнительно крепить верхнюю секцию ригеля к октогональному валу заклепками или самонарезающими винтами.
 - 6. Произвести проверку правильности регулировки концевых выключателей электропривода или ограничителя хода для редукторного привода методом подъема и опускания полотна роллеты. При полностью опущенном полотне вал должен возвратиться в положение, описанное в пункте 4 настоящего раздела.
 - 7. Произвести монтаж крышки короба роллеты.

ВЛАДИВОСТОК

тел. +7 (4232) 62 00 96, 62 00 97 e-mail: vladivostok@alutech.ru

воронеж

тел. +7 (4732) 43 87 09, 08 e-mail: voronezh@alutech.ru

ДНЕПРОПЕТРОВСК

тел./факс: +38 (0 56) 375 22 83, 84 e-mail: info@alutech.dp.ua

ЕКАТЕРИНБУРГ

тел. +7 (343) 368 75 52 +7 (343) 368 73 03 e-mail: info@alutech-ural.ru

ИРКУТСК

тел./факс: +7 (3952) 53 34 78 e-mail: irkutsk@alutech-sibir.ru

КАЗАНЬ

тел. + 7 (843) 543 05 25 факс.:, + 7 (843) 543 05 26 e-mail: info@alutech-kzn.ru

КИЕВ

тел. +38 (044) 451 83 65, 66-69 e-mail: info@alutech.kiev.ua

КРАСНОДАР

тел. +7 (861) 279 01 20 e-mail: info@alutech-jug.ru

КРАСНОЯРСК

тел.: +7 (391) 251 73 52 +7 (391) 226 85 14 +7 (391) 226 85 44

e-mail: krasnoyarsk@alutech-sibir.ru

львов

тел.: +38 (032) 244 22 62 +38 (032) 240 49 62 +38 (032) 240 40 61 e-mail: info@lvov.alutech.ua

МАХАЧКАЛА

тел.: +7 (8772) 69 87 17 e-mail: dagestan@alutech-jug.ru

минск

тел.: +375 (17) 291 94 05 +375 (29) 341 92 03 +375 (29) 121 92 03 факс: +375 (17) 291 92 03

e-mail: info@alutech-td.by

москва

тел./факс: +7 (495) 221 62 00 e-mail: marketing@alutechmsk.ru

н. новгород

тел.: +7 (831) 463 97 61, 62, 63 e-mail: info@alutech-nn.ru

новосибирск

тел.: +7 (383) 233 30 30 факс.: +7 (383) 276 92 99 e-mail: info@alutech-sibir.ru

ОДЕССА

тел.: +38 (048) 728 45 06 e-mail: info@odessa.alutech.ua

омск

тел.: +7 (3812) 38 99 39, 37 19 65 e-mail: omsk@alutech-sibir.ru

РОСТОВ-НА-ДОНУ

тел.: +7 (863) 231 04 84, 94 e-mail: info@alutech-rostov.ru

CAMAPA

тел. +7 (846) 342 06 73, 74, 75, 76 e-mail: info@alutech-samara.ru

САНКТ-ПЕТЕРБУРГ

тел./факс: +7 (812) 303 94 43 e-mail: info@alutechspb.ru

СТАВРОПОЛЬ

тел.: +7 (865) 258 18 55 e-mail: stavropol@alutech.ru

УΦА

тел.: +7 (347) 271 59 15, 09 e-mail: ufa@alutech.ru

ХАБАРОВСК

тел. +7 (4212) 27 57 99, 27 58 00 e-mail: habarovsk@alutech.ru

